
The DOE ACTS Collection
Fast and Robust Libraries for High Performance Computing

Tony Drummond
Lawrence Berkeley National Laboratory
LADrummond@lbl.gov

Goal: The Advanced CompuTational Software Collection (ACTS) project makes
reliable and efficient software tools more widely used, and more effective in
solving the nation’s engineering and scientific problems.

Goal: The Advanced CompuTational Software Collection (ACTS) project makes
reliable and efficient software tools more widely used, and more effective in
solving the nation’s engineering and scientific problems.

References:
• L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software
(ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301,
2005

• http://acts.nersc.gov

References:
• L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software
(ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301,
2005

• http://acts.nersc.gov

The Advanced CompuTational Software Collection Project

A

A

C

C

T

T

S

S

References:
• L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software
(ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301,
2005

• http://acts.nersc.gov

References:
• L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software
(ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301,
2005

• http://acts.nersc.gov

The Advanced CompuTational Software Collection Project

Principal Investigators:
L. A. Drummond and O. A. Marques

Lawrence Berkeley National Laboratory

References:
• L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software
(ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301,
2005

• http://acts.nersc.gov

References:
• L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software
(ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301,
2005

• http://acts.nersc.gov

The Advanced CompuTational Software Collection Project

acts-support@nersc.gov

The Core Activity Areas of the ACTS Collection Project

Sustainable
Software
Support

· · · t∞

· · · t∞

The U.S. DOE ACTS Collection Project

• High
• Intermediate level
• Tool expertise
• Conduct tutorials

• Intermediate
• Basic level
• Higher level of support to users of the tool

• Basic
• Help with installation
• Basic knowledge of the tools
• Compilation of user’s reports

User Community

ACTS

Challenge CodesComputing Systems

Interoperability

Pool of
Software Tools

Testing and
Acceptance Phase

Workshops and
Training

Scientific Computing
Centers

Computer
Vendors

Numerical Simulations
Physics

Chemistry
Biology

Medicine

Mathematics

Bioinformatics
Computer Sciences

Engineering

0

5

10

15

20

25

30

35

40

seconds

10002000300040005000600070008000900010000

1x60

2x30

3x20

4x15

5x12

6x10

problem size

grid shape

Execution time of PDPOSV for various grid shapes

35-40

30-35

25-30

20-25

15-20

10-15

5-10

0-5

Tools In The ACTS Collection

Numerical Tools

Run Time Support

Code Development

Library Development

http://acts.nersc.gov

Funded by DOE/ASCRFunded by DOE/ASCR

Advanced CompuTational Software Collection (ACTS)

Software library for the solution of large sparse eigenproblems on parallel
computers.

SLEPc

Tools for the automatic generation of optimized numerical software for modern
computer architectures and compilers.

ATLASLibrary
Development

Set of tools for analyzing the performance of C, C++, Fortran and Java
programs.

TAURun Time
Support

Object-Oriented tools for solving computational fluid dynamics and combustion
problems in complex geometries.

Overture

Library for writing parallel programs that use large arrays distributed across
processing nodes and that offers a shared-memory view of distributed arrays.

Global Arrays
Code

Development

General-purpose library for the direct solution of large, sparse, nonsymmetric
systems of linear equations.

SuperLU

Library of high performance dense linear algebra routines for distributed-memory
message-passing.

ScaLAPACK

Solvers for the solution of systems of ordinary differential equations, nonlinear
algebraic equations, and differential-algebraic equations.

SUNDIALS

Object-oriented nonlinear optimization package.OPT++

Tools for the solution of PDEs that require solving large-scale, sparse linear and
nonlinear systems of equations.

PETSc

Algorithms for the iterative solution of large sparse linear systems, intuitive grid-
centric interfaces, and dynamic configuration of parameters.

Hypre

Algorithms for the iterative solution of large sparse linear systems.Trilinos

Large-scale optimization software, including nonlinear least squares,
unconstrained minimization, bound constrained optimization, and general
nonlinear optimization.

TAO

Numerical

FunctionalitiesToolCategory

M
ODEs
PDEs

TVUA
zAz
bAx

Σ=
=
=
λ

ScaLAPACKLQ factorization

ScaLAPACKQR with column
pivoting

ScaLAPACKQR Factorization

ScaLAPACKLDLT (Tridiagonal
matrices)

ScaLAPACKCholesky
Factorization

ScaLAPACK(dense)
SuperLU (sparse)

LU Factorization

Direct Methods

Systems of Linear
Equations

LibraryAlgorithmsMethodology
Computational

Problem

Functionality In The ACTS Collection

LibraryAlgorithmsMethodologyComputational
Problem

AztecOO
PETSc

Transpose Free
QMR

AztecOOQuasi-Minimal
Residual (QMR)

AztecOO
PETSc

Bi-CG Stab

AztecOO
PETSc

CG Squared

AztecOO
PETSc
Hypre

GMRES

AztecOO (Trilinos)
PETSc

Conjugate Gradient

Iterative Methods

Systems of Linear
Equations
(cont..)

Functionality In The ACTS Collection

LibraryAlgorithmsMethodologyComputational
Problem

PETScLeast Squares
Polynomials

AztecOOPoint Jocobi
Preconditioner

AztecOO
PETSc
Hypre

Block Jacobi
Preconditioner

PETScRichardson

AztecOO
PETSc
Hypre

Precondition CG

PETScSYMMLQ

Iterative Methods
(cont..)

Systems of Linear
Equations
(cont..)

Functionality In The ACTS Collection

HypreSemi-coarsening

HypreAlgebraic MG

PETSc
Hypre

MG Preconditioner
MultiGrid (MG)

Methods

LibraryAlgorithmsMethodologyComputational Problem

PETScLeast Squares
Polynomials

AztecOOIncomplete LU (ILU)
preconditioner

AztecOO
PETSc
Hypre

Sparse LU
preconditioner

HypreApproximate Inverse

PETScOverlapping Additive
Schwartz

PETScSOR Preconditioning

Iterative Methods
(cont..)

Systems of Linear
Equations
(cont..)

Functionality In The ACTS Collection

ScaLAPACK (dense)
SLEPc (sparse)

EigenproblemGeneralized Symmetric
Definite Eigenproblem

ScaLAPACK (dense)
SLEPc (sparse)

Singular Value
Decomposition

Singular Value Problem

ScaLAPACK (dense)
SLEPc (sparse)For A=AH or A=AT

Symmetric Eigenvalue
Problem

Standard Eigenvalue
Problem

ScaLAPACKMinimum Norm Least
Squares

ScaLAPACKMinimum Norm
Solution

ScaLAPACKLeast SquaresLinear Least Squares
Problems

LibraryAlgorithmMethodologyComputational
Problem

€

minx | | b− Ax | |2

€

minx | | x | |2

€

minx | | x | |2

€

minx | | b− Ax | |2

€

Az = λz

€

A = UΣVT

A = UΣVH

€

Az = λBz
ABz = λz
BAz = λz

Functionality In The ACTS Collection

PETScMatrix Free

PETScPseudo-Transient
Continuation

PETScTrust Regions

PETScLine Search

Newton Based

Non-Linear Equations

LibraryAlgorithmMethodology
Computational

Problem

Functionality In The ACTS Collection

Functionality In The ACTS Collection

OPT++No derivate
informationDirect Search

TAOGradient Projections

OPT++Limited Memory
BFGS

OPT++
TAO

Standard Non-linear
CG

CG

OPT++
TAO

Non-linear Interior
Point

OPT++
TAO

Quasi-Newton

OPT++
TAO

Finite-Difference
Newton

OPT++
TAO

Newton

Newton Based

Non-Linear
Optimization

LibraryAlgorithmMethodologyComputational
Problem

KINSOL (SUNDIALS)Line SearchInexact NewtonNonlinear Algebraic
Equations

IDA (SUNDIALS)Direct and Iterative
Solvers

Backward Differential
Formula

Differential Algebraic
Equations

CVODE
CVODES

Direct and Iterative
Solvers

Backward Differential
Formula

TAOFeasible Semismooth
Semismoothing

Non-Linear
Optimization (cont..) TAOUnfeasible

semismooth

CVODE (SUNDIALS)
CVODES

Adam-Moulton
(Variable coefficient
forms)

Integration
Ordinary Differential
Equations

LibraryAlgorithmMethodologyComputational
Problem

Functionality In The ACTS Collection

CUMULVS (viz)
Globus (Grid)

Distributed Memory

CHOMBO (AMR)
Hypre
OVERTURE

Semi-Structured
Meshes

CHOMBO (AMR)
Hypre
OVERTURE
PETSc

Structured Meshes

OVERTUREGrid Generation

Global ArraysShared-Memory

Distributed Arrays

Writing Parallel
Programs

LibraryTechniquesSupportComputational
Problem

Functionality In The ACTS Collection

ATLASLinear Algebra
TuningLibrary InstallationCode Optimization

TAUAutomatic
InstrumentationExecution

Performance TAUUser Instrumentation

BABELLanguage
Code Generation

Interoperability

CCAComponents

PETScAutomatic
instrumentationAlgorithmic

Performance

Profiling

PETScUser Instrumentation

LibraryTechniqueSupportComputational
Problem

Functionality In The ACTS Collection

 CALL BLACS_GET(-1, 0, ICTXT)
 CALL BLACS_GRIDINIT(ICTXT, 'Row-major', NPROW, NPCOL)
:
 CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)
:
:
 CALL PDGESV(N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB,
 $ INFO)

• -ksp_type [cg,gmres,bcgs,tfqmr,…]
• -pc_type [lu,ilu,jacobi,sor,asm,…]

More advanced:
• -ksp_max_it <max_iters>
• -ksp_gmres_restart <restart>
• -pc_asm_overlap <overlap>
• -pc_asm_type <. . >

Data Layout

structured composite blockstrc unstruc CSR

Linear Solvers

GMG FAC Hybrid, ... AMGe ILU, ...

Linear System Interfaces

Language Calls

Command lines

Problem Domain

How Does One Use ACTS Tools?

Tool to Tool Interoperability

TOOL A

TOOL BTOOL C

TO
O

L
FTO

O
L E

TOOL D

PETSc TAU

Ex 1 Ex 2

One Side Interoperability

High-level User Interfaces to the ACTS Collection

ScaLAPACK

ChomboPETScAZTEC

PVODE

Hypre

SuperLU TAO Overture

Global Arrays

PAWSOPT++ Globus CUMULVS TAU

High Level Interfaces

View_field(T1) zAz λ=

€

A =UΣVT

Ax = b

UsermatlabMPI

PyACTS

NetSolve

Star-P

A Closer Look Into the ACTS Collection

ScaLAPACK

zAz λ=

€

A =UΣVT

Ax = b

PyScaLAPACK

PyPBLASPyBLACS

Py
AC

TS

PETSc SLEPc Dr. J. Roman

TAU Dr. O. Marques

A Quick Introduction to ScaLAPACK

• Susan Blackford
• Jaeyoung Choi, Soongsil University
• Andy Cleary, LLNL
• Ed D'Azevedo, ORNL
• Jim Demmel, UCB
• Inderjit Dhillon, UT Austin
• Jack Dongarra, UTK
• Ray Fellers, LLNL
• Sven Hammarling, NAG
• Greg Henry, Intel
• Sherry Li, LBNL
• Osni Marques, LBNL
• Caroline Papadopoulos, UCSD
• Antoine Petitet, UTK
• Ken Stanley, UCB
• Francoise Tisseur, Manchester
• David Walker, Cardiff
• Clint Whaley, UTK
• Julien Langou, UTK

 M

Team of Developers:

• ScaLAPACK: software structure
–Basic Linear Algebra Subprograms (BLAS)
–Linear Algebra PACKage (LAPACK)
–Basic Linear Algebra Communication Subprograms (BLACS)
–Parallel BLAS (PBLAS)

• ScaLAPACK: details
–Data layout
–Array descriptors
–Error handling
–Performance

• Examples

OUTLINE :

 A Quick Introduction to ScaLAPACK

ScaLAPACK’s Software Structure

ScaLAPACK

BLAS

LAPACK BLACS

MPI/PVM/...

PBLAS
Global
Local

platform specific

Version 1.7 released in August 2001;
new developments under way.

Version 1.7 released in August 2001;
new developments under way.

BLAS: Basic Linear Algebra Subroutines

• Level 1 BLAS: vector-vector

• Level 2 BLAS: matrix-vector

• Level 3 BLAS: matrix-matrix

+ *

*

+ *

10
0.

0
10

00
.0

10
00

0.
0

100
300

500
700

900
1100

1300
1500

1700
1900

order of matrix/vector

M
flo

p/
s

BLAS 1
BLAS 2
BLAS 3

2.2 GHz AMD Opteron

Design Considerations:
• Portability
• Performance: development of blockedalgorithms is important for performance!

BLAS LEVELS:

LAPACK: A Dense Linear Algebra Package

• Linear Algebra library written in Fortran 77 (Fortran 90)
• Combine algorithms from LINPACK and EISPACK into

a single package.
• Efficient on a wide range of computers (RISC, Vector, SMPs).
• Built atop level 1, 2, and 3 BLAS Basic problems:

– Linear systems:
– Least squares:
– Singular value decomposition:
– Eigenvalues and eigenvectors:

• LAPACK does not provide routines for structured problems or
general sparse matrices (i.e. sparse storage formats such as
compressed-row, -column, -diagonal, skyline ...).

bAx =

2
min bAx −

TVUA Σ=

BzAzzAz λλ == ,

netlib.org

BLACS:
Basic Linear Algebra Communication Subroutines

• Response to Message Passing based distributed
communications

• Associate widely recognized mnemonic names with
communication operations. This improves:
– program readability
– self-documenting quality of the code.

• Promote efficiency by identifying frequently
occurring operations of linear algebra which can be
optimized on various computers.

Basic Concepts of The BLACS Interface

• Promote efficiency by identifying common operations of linear algebra
that can be optimized on various computers.

• Processes are embedded in a two-dimensional grid.

Example: a 3x4 grid

• An operation which involves more than one sender and one receiver is
called a scoped operation.

10 32

 0

0

 1 2 3

54 76

98 1110

1

2

Scope Meaning

Row All processes in a process row participate.

Column All processes in a process column participate.

All All processes in the process grid participate.

BLACS Communication Routines

Send/Receive:
 _xxSD2D(ICTXT,[UPLO,DIAG],M,N,A,LDA,RDEST,CDEST)
 _xxRV2D(ICTXT,[UPLO,DIAG],M,N,A,LDA,RSRC,CSRC)

_ (Data type) xx (Matrix type)

I: Integer,
S: Real,
D: Double Precision,
C: Complex,
Z: Double Complex.

GE: General rectangular matrix
TR: Trapezoidal matrix

SCOPE TOP

‘Row’
‘Column’
‘All’

‘ ‘ (default)
‘Increasing Ring’
‘1-tree’ ...

Broadcast:
_xxBS2D(ICTXT,SCOPE,TOP,[UPLO,DIAG],M,N,A,LDA)
_xxBR2D(ICTXT,SCOPE,TOP,[UPLO,DIAG],M,N,A,LDA,RSRC,CSRC)

BLACS Context

• BLACS context ⇔ MPI communicator
• The BLACS context is the BLACS mechanism for partitioning

communication space.
• A message in a context cannot be sent or received in another context.
• The context allows the user to

– create arbitrary groups of processes
– create multiple overlapping and/or disjoint grids
– isolate each process grid so that grids do not interfere with each

other

An Example Code Using BLACS

M

* Get system information
 CALL BLACS_PINFO(IAM, NPROCS)
 M

* Get default system context
 CALL BLACS_GET(0, 0, ICTXT)
 M

* Define 1 x (NPROCS/2+1) process grid
 NPROW = 1
 NPCOL = NPROCS / 2 + 1
 CALL BLACS_GRIDINIT(ICTXT, ‘Row’, NPROW, NPCOL)
 CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)
* If I’m not in the grid, go to end of program
 IF(MYROW.NE.-1) THEN
 IF(MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN
 CALL DGESD2D(ICTXT, 5, 1, X, 5, 1, 0)
 ELSE IF(MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN
 CALL DGERV2D(ICTXT, 5, 1, Y, 5, 0, 0)
 END IF
 M

 CALL BLACS_GRIDEXIT(ICTXT)
 END IF
 M

 CALL BLACS_EXIT(0)
 END

send X to process (1,0)

(output)
process row and

column coordinate

receive X from process (0,0)
leave context

exit from the BLACS

(out) uniquely identifies each process
(out) number of processes available

(in) integer handle indicating the context
(in) use (default) system context
(out) BLACS context

PBLAS: Parallel BLAS

• Similar to the BLAS in portability, functionality and naming.
• Built atop the BLAS and BLACS
• Provide global view of matrix

 CALL DGEXXX(M, N, A(IA, JA), LDA, ...)

 CALL PDGEXXX(M, N, A, IA, JA, DESCA, ...)

BLAS

PBLAS

Array descriptor (to
be reviewed later)

Array descriptor (to
be reviewed later)

A(IA:IA+M-1,JA:JA+N-1)

 JA

IA

N_

N

MM_

ScaLAPACK Design Goals

• Efficiency
–Optimized computation and communication engines
–Block-partitioned algorithms (Level 3 BLAS) for good node performance

• Reliability
–Whenever possible, use LAPACK algorithms and error bounds.

• Scalability
–As the problem size and number of processors grow
–Replace LAPACK algorithm that did not scale (new ones into LAPACK)

• Portability
–Isolate machine dependencies to BLAS and the BLACS

• Flexibility
–Modularity: build rich set of linear algebra tools (BLAS, BLACS, PBLAS)

• Ease-of-Use
–Calling interface similar to LAPACK

ScaLAPACK: Data Layouts

• 1D block and column distributions
• 1D block-cycle column and 2D block-cyclic distribution
• 2D block-cyclic distribution used in ScaLAPACK for dense matrices

How does 2D Block Cyclic Distribution Work

a11 a12 a15 a13 a14

a21 a22 a25 a23 a24

a51 a52 a55 a53 a54

a31 a32 a35 a33 a34

a41 a42 a45 a43 a44

5x5 matrix partitioned in 2x2 blocks 2x2 process grid point of view

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

0 1

2 3

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

An Example of 2D Block Cyclic Distribution























−−−−

−−−

−−

−

5.54.53.52.51.5
5.44.43.42.41.4
5.34.33.32.31.3
5.24.23.22.21.2
5.14.13.12.11.1 M

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

IF (MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN
 A(1) = 1.1; A(2) = -2.1; A(3) = -5.1;
 A(1+LDA) = 1.2; A(2+LDA) = 2.2; A(3+LDA) = -5.2;
 A(1+2*LDA) = 1.5; A(2+3*LDA) = 2.5; A(3+4*LDA) = -5.5;
ELSE IF (MYROW.EQ.0 .AND. MYCOL.EQ.1) THEN
 A(1) = 1.3; A(2) = 2.3; A(3) = -5.3;
 A(1+LDA) = 1.4; A(2+LDA) = 2.4; A(3+LDA) = -5.4;
ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN
 A(1) = -3.1; A(2) = -4.1;
 A(1+LDA) = -3.2; A(2+LDA) = -4.2;
 A(1+2*LDA) = 3.5; A(2+3*LDA) = 4.5;
ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.1) THEN
 A(1) = 3.3; A(2) = -4.3;
 A(1+LDA) = 3.4; A(2+LDA) = 4.4;
END IF

 M

CALL PDGESVD(JOBU, JOBVT, M, N, A, IA, JA, DESCA, S, U, IU,
 JU, DESCU, VT, IVT, JVT, DESCVT, WORK, LWORK,
 INFO)
 M

a11 a12 a15 a13 a14

a21 a22 a25 a23 a24

a51 a52 a55 a53 a54

a31 a32 a35 a33 a34

a41 a42 a45 a43 a44

0 1

2 3

0 1

0

1

LDA is the leading
dimension of the local

array

LDA is the leading
dimension of the local

array

Why the headache of 2D block Cyclic Distribution?

• Ensures good load balance → performance and scalability
 (analysis of many algorithms to justify this layout).
• Encompasses a large number of data distribution schemes (but

not all).
• Needs redistribution routines to go from one distribution to the

other.
• See http://acts.nersc.gov/scalapack/hands-on/datadist.html

AID: http://acts.nersc.gov/scalapack/hands-on/datadist.html

ScaLAPACK: Array Descriptors

• Each global data object is assigned an array descriptor.
• The array descriptor:

– Contains information required to establish mapping between a global
array entry and its corresponding process and memory location (uses
concept of BLACS context).

– Is differentiated by the DTYPE_ (first entry) in the descriptor.
– Provides a flexible framework to easily specify additional data

distributions or matrix types.
• User must distribute all global arrays prior to the invocation of a

ScaLAPACK routine, for example:
– Each process generates its own submatrix.
– One processor reads the matrix from a file and send pieces to other

processors (may require message-passing for this).

Array Descriptor for Dense Matrices

DESC_() Symbolic Name Scope Definition

1
2
3
4
5
6
7

8

9

DTYPE_A
CTXT_A
M_A
N_A
MB_A
NB_A
RSRC_A

CSRC_A

LLD_A

(global)
(global)
(global)
(global)
(global)
(global)
(global)

(global)

(local)

Descriptor type DTYPE_A=1 for dense matrices.
BLACS context handle.
Number of rows in global array A.
Number of columns in global array A.
Blocking factor used to distribute the rows of array A.
Blocking factor used to distribute the columns of array A.
Process row over which the first row of the array A is
distributed.
Process column over which the first column of the array A
is distributed.
Leading dimension of the local array.

Array Descriptor for Narrow Band Matrices

DESC_() Symbolic Name Scope Definition

1

2
3
4
5

6

7

DTYPE_A

CTXT_A
N_A
NB_A
CSRC_A

LLD_A

−

(global)

(global)
(global)
(global)
(global)

(local)

−

Descriptor type DTYPE_A=501 for 1 x Pc process grid for
band and tridiagonal matrices block-column distributed.
BLACS context handle.
Number of columns in global array A.
Blocking factor used to distribute the columns of array A.
Process column over which the first column of the array A
is distributed.
Leading dimension of the local array. For the tridiagonal
subroutines, this entry is ignored.
Unused, reserved.

 Array Descriptor for
Right Hand Sides for Narrow Band Linear Solvers

DESC_() Symbolic Name Scope Definition

1

2
3
4
5

6

7

DTYPE_B

CTXT_B
M_B
MB_B
RSRC_B

LLD_B

−

(global)

(global)
(global)
(global)
(global)

(local)

−

Descriptor type DTYPE_B=502 for Pr x 1 process grid for
block-row distributed matrices
BLACS context handle
Number of rows in global array B
Blocking factor used to distribute the rows of array B
Process row over which the first row of the array B is
distributed
Leading dimension of the local array. For the tridiagonal
subroutines, this entry is ignored
Unused, reserved

ScaLAPACK Functionality

Iterative
Refinement

Conditioning
estimator

Driver type

x
x
x
x

x
x
x
x

x
x

x
x
x

Symmetric
General
Generalized BSPD
SVD

SolveReduceExpertSimpleAx = λx or Ax = λB x

xx
x
x

xLeast Squares
GQR
GRQ

xxxx
x
x

x
x
x

xx
x
x

General
General Banded
General Tridiagonal

xxxx
x
x

x
x
x

xx
x
x

SPD
SPD Banded
SPD Tridiagonal

xxxxxTriangular

InversionSolveFactorExpertSimpleAx = b

ScaLAPACK: Error Handling

• Driver and computational routines perform global and local
input error-checking.
– Global checking → synchronization
– Local checking → validity

• No input error-checking is performed on the auxiliary
routines.

• If an error is detected in a PBLAS or BLACS routine
program execution stops.

ScaLAPACK: Debugging Hints

• Look at ScaLAPACK example programs.
• Always check the value of INFO on exit from a

ScaLAPACK routine.
• Query for size of workspace, LWORK = –1.
• Link to the Debug Level 1 BLACS (specified by

BLACSDBGLVL=1 in Bmake.inc).
• Consult errata files on netlib:
 http://www.netlib.org/scalapack/errata.scalapack
 http://www.netlib.org/blacs/errata.blacs

ScaLAPACK Performance

• The algorithms implemented in ScaLAPACK are scalable in the sense that the
parallel efficiency is an increasing function of N2/P (problem size per node).

• Maintaining memory use per node constant allows efficiency to be maintained (in
practice, a slight degradation is acceptable).

• Use efficient machine-specific BLAS (not the Fortran 77 source code available in
http://www.netlib.gov) and BLACS (nondebug installation).

• On a distributed-memory computer:
– Use the right number of processors

• Rule of thumb: P=MxN/106 for an MxN matrix, which provides a local
matrix of size approximately 1000-by-1000.

• Do not try to solve a small problem on too many processors.
• Do not exceed the physical memory.

– Use an efficient data distribution.
• Block size (i.e., MB,NB) = 64.
• Square processor grid: Prow = Pcolumn.

ScaLAPACK Performance:
 Varying Proc Grid Size

0

10

20

30

40

50

60

70

80

90

100

seconds

10002000300040005000600070008000900010000

1x60

2x30

3x20

4x15

5x12

6x10

problem size

grid shape

Execution time of PDGESV for various grid shape

90-100

80-90

70-80

60-70

50-60

40-50

30-40

20-30

10-20

0-10

Times obtained on:
60 processors, Dual AMD Opteron 1.4GHz Cluster with Myrinet Interconnect, 2GB Memory

ScaLAPACK Performance:
 Computation vs. Communication

0.01

0.1

1

10

100

seconds

1000 4000 7000 1000

problem size

Optimal grid (6x10) for PDGESV
Comparison between Computation and
Redistribution of Data from Linear Grid

Calculation Time

Redistribution
Time

Times obtained on:
60 processors, Dual AMD Opteron 1.4GHz Cluster w/Myrinet Interconnect 2GB Memory

Commercial use of ScaLAPACK

ScaLAPACK has been incorporated in the following commercial
packages:
– Fujitsu
– Hewlett-Packard
– Hitachi
– IBM Parallel ESSL
– NAG Numerical Library
– Cray LIBSCI
– NEC Scientific Software Library
– Sun Scientific Software Library
– Visual Numerics (IMSL)

SUMMARY

Software Sustainability
 Requirement

• Outlive Complexity
– Increasingly sophisticated models
– Model coupling
– Interdisciplinary

• Sustained Performance
– Increasingly complex algorithms
– Increasingly diverse architectures
– Increasingly demanding applications

min[time_to_first_solution] (prototype)

min[time_to_solution] (production)

(Software Evolution)

(Long-term deliverables)

min[software-development-cost]
max[software_life] and max[resource_utilization]

SUMMARY

PyACTS

References

• ScaLAPACK and PyACTS hands-on this week
• PETSc and SLEPc tutorials this week
• ACTS Information Center: http://acts.nersc.gov
• Two Journal Issues dedicated to ACTS

• Eighth ACTS Collection Workshop, August 21-24, 2007

